
Query Planning and Optimization

Dr. Qichen Wang

EPFL

2025.5

Download this slide

Self-introduction

◼ Dr. Qichen Wang

– PhD from Hong Kong University of Science and Technology, 2022

– Research Assistant Professor, Hong Kong Baptist University 2022-2024

– Postdoc, EPFL, 2024-now

◼ Teaching experiences:

– Lecturer: Cloud Computing, Hong Kong Baptist University

– TA: Big Data Technology, Combinatorial Optimization, HKUST

◼ Teaching interests:

– Databases, Cloud Computing, Big Data Technology, Algorithms, Data Structures

– Other BS/MS level CS courses

Query Planning and Optimization
2

Prerequisite

◼ Fundamental relational concepts: tables, tuples, columns, primary and foreign keys

◼ Relational algebra

◼ Basic concepts of writing SQL queries, SELECT, FROM, WHERE, different types of joins, and
subqueries

◼ Big-O analysis for algorithmic cost

Query Planning and Optimization
3

Demo Database

◼ Student(sid, name, state), Course(cid, title), Enrolled(sid, cid, grade)

Query Planning and Optimization
4

sid name state

1 Alice CA

2 Bob NY

3 Charlie CA

4 Diana TX

5 Eve CA

6 Frank TX

7 Grace NY

cid title

101 Database Systems

102 Operating Systems

103 Algorithms

104 Computer Networks

sid cid grade

1 101 A

1 103 B

2 101 B

2 102 A

3 101 A

3 102 B

3 103 A

3 104 A

4 103 C

5 101 B

5 102 A

6 101 A

7 104 A

8 101 A

Download the demo database

To load it:

For DuckDB:

 .read /path/to/demo.sql

For PostgreSQL:

 \i /path/to/demo.sql

https://qichen-wang.github.io/files/demo.sql

https://qichen-wang.github.io/files/demo.sql

SQL: A declarative language

◼ When writing SQL queries, we only express our high-level ideas.

◼ There can be different ways of evaluating the query.

– “Listing all students from CA and the courses they have enrolled in.”

Query Planning and Optimization
5

SELECT name, title

FROM Student s, Course c, Enrolled e

WHERE s.sid = e.sid

AND c.cid = e.cid

AND s.state = 'CA';

6

Before Optimization

The first step of optimization

◼ Ideally, the optimizer should do everything for you.

– But that is not the case for current database systems.

Query Planning and Optimization
7

An example:

 Student(sid, name, state), Course(cid, title), Enrolled(sid, cid, grade)

◼ Suppose you want to find the students who have enrolled in all courses

◼ What will you do?

◼ ‘For all’ is hard to represent in SQL

◼ A direct translation: Find the students for whom there are no course they have not enrolled in.

Query Planning and Optimization
8

SELECT sid

FROM Student s

WHERE NOT EXISTS (

 SELECT * FROM Course c

 WHERE NOT EXISTS (
 SELECT * FROM Enrolled e

 WHERE s.sid = e.sid AND c.cid = e.cid

));

It takes 𝑂 𝑛2 time

Loop over all students and courses

and check the Enrolled table for every

possible combination.

How to do better?

 Student(sid, name, state), Course(cid, title), Enrolled(sid, cid, grade)

◼ Suppose you want to find the students who have enrolled in all courses

◼ Another possible way: Find the students whose enrolled course count matches the total number of
courses in the Course table.

◼ The first SQL query is 2x slower than the second SQL query on the toy database. The gap can be
more significant with more records in the database.

◼ Writing a good SQL can reduce the complexity at the beginning.

Query Planning and Optimization
9

Can be done in linear time 𝑂(𝑛)

SELECT sid

FROM Enrolled e

GROUP BY sid

HAVING count(*) = (SELECT count(*) FROM Course c);

Query Optimization by Quantifier Elimination, Christoph Koch and Peter Lindner, PODS 2024

Some good practices you should know

◼ Rule 1: Select Only Necessary Columns

– To avoid select * queries.

– It is hard to find a query requiring every table column.

– For some databases, data is stored in columnar format.

– Selecting only required columns can significantly reduce the I/O cost.

Query Planning and Optimization
10

Some good practices you should know

◼ Rule 2: Remove redundant filter conditions and avoid functions in filter conditions

– For example, having both ”data >= 2025-01-01 and data <= 2025-12-31” and “YEAR(date) = 2025”

– YEAR(date) = 2025 is redundant

– Also, YEAR(date) = 2025 is not index-friendly; databases usually have indices on the range
queries, but not for functions.

Query Planning and Optimization
11

Some good practices you should know

◼ Rule 3: Replace IN with EXISTS

– For some databases, the EXISTS clause often offers better performance.

– Some databases can optimize that for you (e.g., DuckDB) while some cannot (e.g., PostgreSQL)

– Always use EXISTS if the right-hand side is a subquery.

Query Planning and Optimization
12

SELECT name

FROM Student s

WHERE EXISTS (SELECT 1

 FROM Enrolled e, Course c

 WHERE e.cid = c.cid
 AND s.sid = e.sid

 AND c.title = 'Database Systems'

 AND e.grade = 'A')

AND state = 'CA';

SELECT name

FROM Student

WHERE state = 'CA'

 AND sid IN (SELECT E.sid

 FROM Enrolled e, Course c
 WHERE e.cid = c.cid

 AND c.title = 'Database Systems'

 AND e.grade = 'A');

Some good practices you should know

◼ Rule 4: Replace unnecessary joins with semi-joins (EXISTS)

– Some join queries can be replaced with a semi-join if the output attributes are only located in
one of the two relations.

– Avoid costly full join computation.

Query Planning and Optimization
13

SELECT name

FROM Student s

WHERE EXISTS (SELECT 1

 FROM Enrolled e

 WHERE s.sid = e.sid
 AND e.grade = 'A'

 AND EXISTS (SELECT 1

 FROM Course c

 WHERE c.cid = e.cid

 AND c.title = 'Database Systems'))
AND S.state = 'CA';

SELECT DISTINCT S.name

FROM Student s, Enrolled e, Course c

WHERE S.state = 'CA'

AND C.title = 'Database Systems'

AND E.grade = 'A'
AND s.sid = e.sid AND c.cid = e.cid;

Viewing Query Evaluation Plans

◼ Most databases support 'EXPLAIN

<query>' to display the query execution

plan.

– Display plan chosen by query optimizer,

along with cost estimation

◼ Some databases (e.g., PostgreSQL,

DuckDB) support 'EXPLAIN ANALYZE

<query>'

– Shows actual runtime statistics found by

running the query, in addition to showing
the plan

Query Planning and Optimization
14

EXPLAIN ANALYZE SELECT name, title

FROM Student s, Course c, Enrolled e

WHERE s.sid = e.sid

AND c.cid = e.cid

AND s.state = 'CA';

15

Logical Plans and Rule-based
Optimization

Logical Query Optimization

◼ The logical plan corresponds to a relational algebra expression.

◼ We need to find the equivalent relational algebra expressions to find equivalent plans.

Query Planning and Optimization
16

Identify Query
Generate

Logical Plan

Generate
Equivalent

Plans

Find Best Plan
with Cost
Estimates

The parser first

parses the SQL and

generate abstract

syntax tree.

The Binder first

generate a logical

plan for the input

query

The planner then

generate multiple

equivalent plans for

the given query

The optimizer

calculate the cost

for every equivalent

plans and find the

optimal one

Transformation of Relational Expressions

◼ Two relational algebra expressions are said to be equivalent if the two expressions generate the
same set of tuples on every legal database instance.

– Note: order of tuples is irrelevant

◼ An equivalence rule says that expressions of two forms are equivalent.

– Can replace the expression of the first form by the second, or vice versa

◼ It is actually hard to find all possible equivalent expressions

– NP-hard problem

◼ Practically: Choose from a subset of all possible plans

Query Planning and Optimization
17

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

𝜎𝜃1∧𝜃2
𝐸 ≡ 𝜎𝜃1

𝜎𝜃2
𝐸

𝜎𝑠.𝑠𝑖𝑑<10 ∧𝑠.𝑠𝑡𝑎𝑡𝑒=′𝐶𝐴′ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ≡ 𝜎𝑠.𝑠𝑖𝑑<10 𝜎𝑠.𝑠𝑡𝑎𝑡𝑒=′𝐶𝐴′ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡

2. Selection operation is commutative.

𝜎𝜃1
𝜎𝜃2

𝐸 ≡ 𝜎𝜃2
𝜎𝜃1

𝐸

𝜎𝑠.𝑠𝑖𝑑<10 𝜎𝑠.𝑠𝑡𝑎𝑡𝑒=′𝐶𝐴′ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ≡ 𝜎𝑠.𝑠𝑡𝑎𝑡𝑒=′𝐶𝐴′ 𝜎𝑠.𝑠𝑖𝑑<10 𝑆𝑡𝑢𝑑𝑒𝑛𝑡

Query Planning and Optimization
18

Equivalence Rules

3. Join is commutative
𝐸1 ⋈ 𝐸2 ≡ 𝐸2 ⋈ 𝐸1

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⋈ 𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑑 ≡ 𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑑 ⋈ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡

4. Natural join are associative
𝐸1 ⋈ 𝐸2 ⋈ 𝐸3 ≡ 𝐸1 ⋈ 𝐸2 ⋈ 𝐸3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⋈ 𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑑 ⋈ 𝐶𝑜𝑢𝑟𝑠𝑒 ≡ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⋈ 𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑑 ⋈ 𝐶𝑜𝑢𝑟𝑠𝑒

◼ The associative of natural join can create a lot of equivalence plans.

– Will discuss later.

Query Planning and Optimization
19

Equivalence Rules

5. Only the last in a sequence of projection operations is needed, the others can be omitted.

𝜋𝐿1
𝜋𝐿2

⋯ 𝜋𝐿𝑛
𝐸 ≡ 𝜋𝐿1

𝐸

where 𝐿1 ⊆ 𝐿2 ⊆ ⋯ ⊆ 𝐿𝑛.

𝜋𝐴 𝜋𝐴,𝐵,𝐶 𝑅 ≡ 𝜋𝐴 𝑅

Query Planning and Optimization
20

Predicate Pushdown

6. The selection operation can be distributed over the join operations if all the attributes in 𝜃 involve
only those from one of the expressions 𝐸1 being joined.

𝜎𝜃 𝐸1 ⋈ 𝐸2 ≡ 𝜎𝜃 𝐸1 ⋈ 𝐸2

Query Planning and Optimization
21

SELECT DISTINCT S.name

FROM Student s, Enrolled e, Course c

WHERE S.state = 'CA'

AND C.title = 'Database Systems'

AND E.grade = 'A'
AND s.sid = e.sid AND c.cid = e.cid;

𝜎𝑆.𝑠𝑡𝑎𝑡𝑒=𝐶𝐴∧𝐶.𝑡𝑖𝑡𝑙𝑒=𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑆𝑦𝑠𝑡𝑒𝑚𝑠∧𝐸.𝑔𝑟𝑎𝑑𝑒=𝐴 s ⋈ 𝑒 ⋈ 𝑐

𝜎𝑠.𝑠𝑡𝑎𝑡𝑒=𝐶𝐴 𝑠 ⋈ 𝜎𝑒.𝑔𝑟𝑎𝑑𝑒=𝐴 𝑒 ⋈ 𝜎𝑐.𝑡𝑖𝑡𝑙𝑒=𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 𝑐

𝑂 𝑛2

𝑂 1

𝑂 1

𝑂 1

𝑂 1

𝑂 1

𝑂 1

Projection Pushdown

7. The projection operation distributes over the join operation as follows:

 Assume 𝐿1/𝐿2 only involves attributes from 𝐸1/𝐸2, 𝐿3 are the set of join attributes:

𝜋𝐿1∪𝐿2
𝐸1 ⋈ 𝐸2 ≡ 𝜋𝐿1∪𝐿2

𝜋𝐿1∪𝐿3
𝐸1 ⋈ 𝜋𝐿2∪𝐿3

𝐸2

i.e., we first project all attributes in 𝐸1/𝐸2 that are either not in the final output attributes, or the join
attributes. After calculating the join, we remove all the non-output join attributes (𝜋𝐿1∪𝐿2

)

Query Planning and Optimization
22

SELECT name, title

FROM Student s, Course c, Enrolled e

WHERE s.sid = e.sid

AND c.cid = e.cid

AND s.state = 'CA';

Heuristic Optimizations

◼ There are more rules (even rules that have not been discovered yet).

◼ These techniques do not need to examine data.

– Predicate pushdown

– Projection pushdown

◼ Idea: drop unused data as much as possible and as early as possible without affecting the efficiency

◼ Provide a much better starting point for the next stage of optimization.

Query Planning and Optimization
24

25

Cost-based Optimization

Cost-based Query Optimization

◼ The efficiency of a query plan depends on multiple factors:

– CPU time

– I/O operations

– Memory usage

– Cache misses

◼ Cost Model: a weighted formula that combines all these factors:
𝑐1 𝐶𝑃𝑈 𝑂𝑝𝑠 + 𝑐2 𝐼/𝑂 𝑂𝑝𝑠 + ⋯

– The constants 𝑐1, 𝑐2, ⋯ depend heavily on hardware

– They are determined by the database system.

– The formula can be simpler or more complicated.

◼ Also, heavily depends on the output size of each operator, which determine the number of CPU and
I/O operations

Query Planning and Optimization
26

Cost Estimation

◼ Need statistics of input relations.

– E.g., number of tuples, sizes of tuples

◼ Need to estimate the statistics of expression results

– Can work as the input of another expression

– To do so, we require additional statistics

• E.g., the number of distinct values for an attribute

• Selectivity of a predicate conditions

Query Planning and Optimization
27

How to Get Estimated Statistics

◼ Choice #1: Histograms

– Maintain an occurrence count per value (or range of values) in a column

◼ Choice #2: Sketches

– A probabilistic data structure that gives an approximate count for a given value

◼ Choice #3: Sampling

– DMBS maintains a small subset of each table that it then uses to evaluate expressions to compute
selectivity.

◼ Not covered in this lecture.

– Let’s assume we have a perfect estimator that can always return the actual number.

Query Planning and Optimization
28

Single-Relation Query Planning

◼ Pick the best access method.

– Sequential Scan

e.g. , Select * From R, which requires accessing all records

– Binary Search (clustered indexes)

e.g. , Range filter conditions like Select … From R Where R.x <= 10;

– Index Scan

e.g., Point filter conditions like Select … From R Where R.x = 'A';

◼ Predicate evaluation ordering

– Apply the predicates with indexes first to avoid a sequential scan

– Apply the most restricted predicate first

◼ Simple heuristics are often good enough for this

Query Planning and Optimization
29

How to choose a better plan: Join Reordering

◼ Unlike predicate pushdown and projection pushdown, we cannot determine which relational
expression is better after applying associative rules for multiple joins.

Query Planning and Optimization
30

SELECT name, title

FROM Student s, Course c, Enrolled e

WHERE s.sid = e.sid

AND c.cid = e.cid

AND s.state = 'CA';

Join Reordering

◼ Let’s assume there are

– 10000 records in the Enrolled relation

– 50 records in the Course relation

– 2000 records in the Student relation

– Only 100 students are from CA

– Every student enrolls in at most 10 courses

◼ Cost of the plan (The output size of each

operation)

– 𝐶𝑜𝑢𝑟𝑠𝑒 ⋈ 𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑑: returns 10000 records.

– The filter predicate returns 100 records.

– The final join returns at most 1000 records.

Query Planning and Optimization
31

Join Reordering

◼ Let’s assume there are

– 10000 records in the Enrolled relation

– 50 records in the Course relation

– 2000 records in the Student relation

– Only 100 students are from CA

– Every student enrolls in at most 10 courses

◼ Cost of the plan (The output size of each

operation)

– The selective predicate returns 100 records.

– The first join returns at most 1000 records.

– The final join returns at most 1000 records.

◼ Assuming that generating one record

requires a unit of time:

– The first plan takes 11100 units

– The second plan takes 2100 units

Query Planning and Optimization
32

Join Reordering

◼ Consider a chain join query:
𝑅1 𝑥1, 𝑥2 ⋈ 𝑅2 𝑥2, 𝑥3 ⋈ ⋯ ⋈ 𝑅𝑛(𝑥𝑛 , 𝑥𝑛+1)

◼ There can be 𝑂(4𝑛) different join orders (Catalan number)

– With 10 relations, total 4862 plans

– With 20 relations, more than 1.7 billion plans

Query Planning and Optimization
33

Join Reordering (cont.)

◼ But there are a lot of duplicates for plans:

𝑅1 𝑥1, 𝑥2 ⋈ 𝑅2 𝑥2, 𝑥3 ⋈ 𝑅3 𝑥3, 𝑥4 ⋈ 𝑅4 𝑥4, 𝑥5 ⋈ 𝑅5 𝑥5, 𝑥6 ⋈ 𝑅6 𝑥6, 𝑥7

and

𝑅1 𝑥1, 𝑥2 ⋈ 𝑅2 𝑥2, 𝑥3 ⋈ 𝑅3 𝑥3, 𝑥4 ⋈ 𝑅4 𝑥4, 𝑥5 ⋈ 𝑅5 𝑥5, 𝑥6 ⋈ 𝑅6 𝑥6, 𝑥7

shares the same plan for evaluating the joins between 𝑅1, 𝑅2, 𝑅3

◼ The problem has overlapping sub-problems and show optimal sub-structure.

Query Planning and Optimization
34

Dynamic Programming!

Dynamic Programming for Join Ordering

◼ Let 𝑐𝑜𝑠𝑡 𝑖, 𝑗 store the minimal cost for calculating chain query 𝑅𝑖 ⋈ ⋯ ⋈ 𝑅𝑗 , with 𝑝𝑙𝑎𝑛[𝑖, 𝑗] store

the corresponding query plan. Assume the cost of calculating a join query is the size of the result.

– When 𝑖 > 𝑗, the problem is invalid

– When 𝑖 = 𝑗, return the relation 𝑅𝑖 directly with the cost of |𝑅𝑖|

◼ When calculating the optimal plan for chain query 𝑅𝑖 ⋈ ⋯ ⋈ 𝑅𝑗, we determine the position 𝑘 for

performing the last join

– i.e., we calculate 𝑅𝑖 ⋈ ⋯ ⋈ 𝑅𝑘 and 𝑅𝑘+1 ⋈ ⋯ ⋈ 𝑅𝑗 first, and then calculate the join query

𝑅𝑖 ⋈ ⋯ ⋈ 𝑅𝑘 ⋈ 𝑅𝑘+1 ⋈ ⋯ ⋈ 𝑅𝑗

– There are totally 𝑗 − 𝑖 different choices

◼ The cost of choosing 𝑘 will be

𝑐𝑜𝑠𝑡 𝑖, 𝑘 + 𝑐𝑜𝑠𝑡 𝑘 + 1, 𝑗 + 𝑅𝑖 ⋈ ⋯ ⋈ 𝑅𝑗

Query Planning and Optimization
35

Bottom-up Procedure

◼ To calculate the optimal cost for [𝑖, 𝑗], we

first calculate all 𝑐𝑜𝑠𝑡[𝑙, 𝑚] with 𝑖 ≤ 𝑙 ≤ 𝑚 ≤
𝑗 and 𝑚 − 𝑙 < 𝑗 − 𝑖

◼ Then we try all possible 𝑘 and keep only

the optimal one.

Query Planning and Optimization
36

Complexity Analysis

◼ 𝑂 𝑛2 memory cost

◼ 𝑂(𝑛3) time complexity

– When n = 20, the cost is 8000 instead of 1.7 billion.

◼ It is still costly if 𝑛 is large.

Query Planning and Optimization
37

Left-Deep Query Plans

◼ In left-deep query plans, the right-hand side for each join is a relation, not the result of an
intermediate join.

◼ Left-deep plan allows pipelining and avoids materialization of intermediate results.

– If the join is not a sort-merge join.

Query Planning and Optimization
38

Left-Deep Query Plans (cont.)

◼ If only the left deep query plans are considered, the number of query plans is significantly reduced.

– Partition 𝑛 relations into 𝑛 − 1 and 1 relation

– For the chain query, only 𝑅1 and 𝑅𝑛 can be the right-most relation

Query Planning and Optimization
39

Left-Deep Query Plans (cont.)

◼ For calculating 𝑐𝑜𝑠𝑡 𝑖, 𝑗 , we only need to

consider the right-most relation to be 𝑅𝑖 or
𝑅𝑗

– No need to choose split point 𝑘 anymore.

– Reduce a factor of 𝑛 for time complexity.

Query Planning and Optimization
40

Conclusion

◼ Query optimization is critical for a database system.

– SQL -> Logical Plan -> Physical Plan

◼ The optimization step:

– Write good SQL if possible.

– Rule-based optimization for filtering logical plans.

• Finding equivalent relational expressions

– Cost-based optimization is used to select the best logical and physical plan.

• A dynamic programming-based algorithm to avoid plan recomputation

◼ What is missing:

– Some equivalent rules (read Database System Concepts, Section 13.2.1, and finish the practice exercises)

– The cost estimation methods (Section 13.3)

◼ If you like this and want to make cash money in the database industry, consider earning a PhD in the
database team at NTU.

Query Planning and Optimization
41

Reference

◼ Lecture Note 14: Query Planning and Optimization, 15-445/645 Database Systems (Fall 2023), Andy
Pavlo, Jignesh Patel

◼ “The Alice book”, S. Abiteboul, R. Hull and V. Vianu, “Foundations of Databases.”

◼ “Database System Concepts”, Avi Silberschatz, Henry F. Korth, S. Sudarshan, 6th edition

◼ Some figures in this slide are from the textbook “Database System Concepts”.

Query Planning and Optimization
42

	Slide 1: Query Planning and Optimization
	Slide 2: Self-introduction
	Slide 3: Prerequisite
	Slide 4: Demo Database
	Slide 5: SQL: A declarative language
	Slide 6
	Slide 7: The first step of optimization
	Slide 8: An example:
	Slide 9: How to do better?
	Slide 10: Some good practices you should know
	Slide 11: Some good practices you should know
	Slide 12: Some good practices you should know
	Slide 13: Some good practices you should know
	Slide 14: Viewing Query Evaluation Plans
	Slide 15
	Slide 16: Logical Query Optimization
	Slide 17: Transformation of Relational Expressions
	Slide 18: Equivalence Rules
	Slide 19: Equivalence Rules
	Slide 20: Equivalence Rules
	Slide 21: Predicate Pushdown
	Slide 22: Projection Pushdown
	Slide 24: Heuristic Optimizations
	Slide 25
	Slide 26: Cost-based Query Optimization
	Slide 27: Cost Estimation
	Slide 28: How to Get Estimated Statistics
	Slide 29: Single-Relation Query Planning
	Slide 30: How to choose a better plan: Join Reordering
	Slide 31: Join Reordering
	Slide 32: Join Reordering
	Slide 33: Join Reordering
	Slide 34: Join Reordering (cont.)
	Slide 35: Dynamic Programming for Join Ordering
	Slide 36: Bottom-up Procedure
	Slide 37: Complexity Analysis
	Slide 38: Left-Deep Query Plans
	Slide 39: Left-Deep Query Plans (cont.)
	Slide 40: Left-Deep Query Plans (cont.)
	Slide 41: Conclusion
	Slide 42: Reference

